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Abstract. Marketing practitioners and academics have shown a keen interest in the processes that drive con-
sumers’ choices since the early work of Guadagni and Little (1982). Over the past decade or so, a number of
alternative models have been proposed, implemented and analyzed. The common behavioral assumption that
underlines these models of discrete choice is random utility maximization (RUM). The RUM assumption, in its
simplest form, posits that a consumer with a finite set of brands to choose from chooses the brand that gives her
the maximum amount of utility. An alternative approach would be to assume that consumers choose the alterna-
tive that offers them the least disutility. Our paper proposes and tests a broad class of generalized extreme value
models based on this hypothesis. We model the decision process of the consumer the assumption random disutility
minimization (RDM) and derive a new class of discrete choice models based on this assumption. Our findings
reveal that there are significant theoretical and econometric differences between the discrete choice models derived
from a RUM framework and the RDM framework proposed in this paper. On the theoretical front we find that the
class of discrete choice models based on the assumption of disutility minimization is structurally different from
the models in the literature. Further, the models in this class are available in closed form and exhibit the same
flexibility as the GEV models proposed by McFadden (1978). In fact, the number of parameters are identical to
and have the same interpretation as those obtained via RUM based GEV models. In addition to the theoretical
differences we also uncover significant empirical insights. With the computing effort and time for both models
being roughly the same this new set of models offers marketing academics and researchers a viable new tool with
which to investigate discrete choice behavior.
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1. Introduction

The empirical investigation of consumer choices and the determinants of such choices has
been a topic of interest to researchers in marketing since the early work of Guadagni and
Little (1982). Over the past decade or so, a number of alternative models have been pro-
posed, implemented and analyzed. A large proportion of these models are variants derived
from the Generalized Extreme Value framework proposed by McFadden (1978). Perhaps
the most popular of these is the multinomial logit (MNL) model. The MNL’s popularity has
been attributed to its analytical simplicity and even though some of its properties, particu-
larly the independence of irrelevant alternatives property (IIA), are considered limiting, it
remains the model of choice.1 In his seminal paper on generalized extreme value (GEV)

1 Pun intended.
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models, McFadden (1978) introduced a broad class of models that included, among others,
the conditional logit and the nested logit. The GEV choice framework is based on the mul-
tivariate GEV distribution which relies on the specification of a dependence or generating
function. The choice of this function dictates the nature of the choice model that emerges.
In recent years there has been a flurry of research activity that focuses on these dependence
functions.2

Marketing applications of GEV based choice models are numerous (see e.g., Guadagni
and Little, 1983; Bell and Lattin, 1998; Horsky and Nelson, 1992 for applications of the
Conditional or Multinomial Logit and Fotheringham, 1988; Dubin, 1986; Kannan and
Wright, 1991 for the Nested Logit). In many of these applications the basic GEV models
have been modified, and in some cases extended, to investigate specific issues such as choice
dynamics (Roy et al., 1996; Erdem and Keane, 1996; Seetharaman, 2003), brand and choice
maps (Chintagunta, 1994; Elrod, 1987), taste heterogeneity (Jain et al., 1994; Kamakura
and Russell, 1986; Gonul and Srinivasan, 1993; Rossi et al., 1996)), loss aversion (Winer,
1986; Mazumdar and Pappatla, 2000) and more recently structural models of competition
(Sudhir, 2001; Kadiyali, et al., 2000).

The common behavioral assumption that underlines these models of discrete choice is
that of “random utility maximization” (RUM). This assumption, in its simplest form, posits
that a consumer when faced with a finite set of brands to choose from, chooses that brand
which gives her the maximum amount of utility. It would seem natural then to assume that an
alternative, and equally viable, approach could be constructed in which consumers choose
the alternative that offers them the least cost or disutility. Economic theory suggests that
the solutions to the consumption problem under either assumption would result in the same
solution. This equivalence is formalized in most economics textbooks by treating cost or
expenditure minimization as the “dual” of utility maximization (see e.g., Mas-Colell et al.,
1995)

There have been a number of marketing studies that focus on a model of consumer behav-
ior that involves the minimization of some form of “random disutility”. Gonul and Srinivasan
(1996) model the dynamics of consumer shopping behavior based on the premise that con-
sumers minimize their discounted expenditure function. Dubin (1986) models the choice
of heating systems and remarks that the deterministic component of utility “. . . depends
principally on life-cycle or total costs.” In Bell et al., (1998) a consumer chooses a store that
minimizes the sum of fixed and variable costs of shopping. In all these studies the authors
derive their theoretical model based on the premise of cost or disutility minimization but do
not carry their theory through to an econometric implementation. Instead they negate these
disutilities to obtain pseudo-utilities and ultimately the standard logit type probabilities.
This approach, while not wrong, implicitly assumes that minimization and maximization
would result in the same probability structures. In fact, marketing is not alone in making this
assumption. Similar examples can be found in studies of transportation issues, political sci-
ence, geography and economics that translate disutilities and costs into utilities by invoking
the textbook notion of duality coupled with the implicit assumption that the maximization
and minimization formulations arrive at the same set of discrete choice probabilities. As

2 See Koppelman and Sethi (2000) for a review of various discrete choice models based on the GEV framework.
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this paper will show, for a number of the models used in the extant literature, the latter
assumption does not always hold.

In a recent paper Anderson and De Palma (1999) showed that for errors distributed i.i.d.
extreme value (Type I), the disutility minimization approach (rather than utility maximiza-
tion) does not yield conditional logit probabilities. Their derivations show the existence of
a related, but significantly different, consumer choice framework. They term their model
the Reverse Multinomial Logit model and investigate its properties, focusing primarily on
its applicability to oligopolistic competition. While Anderson and De Palma (1999) do not
undertake an empirical investigation of their framework, they do mention that research in
this area might yield interesting insights. Our framework generalizes their approach and we
therefore term the class of models obtained Generalized Reverse Discrete Choice Models.

This paper constructs a framework that generates a class of generalized extreme value
based discrete choice models where the decision process of the consumer is modeled under
the assumption of random disutility minimization (RDM). We show that this class nests the
Anderson and De Palma (1999) model and contains a number of other new variants. Our
findings reveal that there are significant structural and econometric differences between the
discrete choice models derived from the RUM framework of McFadden (1978, 1981) and
RDM framework proposed in this paper.

Our analysis shows that the class of discrete choice models based on the assumption of
random disutility minimization is structurally very different from the models in the extant
literature. Notable among these differences is the fact that the RDM based version of the
conditional logit model does not exhibit the IIA property. In spite of these differences, the
models in this class are available in closed form and exhibit the same flexibility as the GEV
models proposed by McFadden (1978). In fact, the number of parameters are identical
to and have the same interpretation as those obtained via RUM based GEV models. In
addition to the theoretical analysis we also calibrate the “reverse” analogs of popular discrete
choice models on real data. Our findings reveal interesting empirical contrasts between the
estimation results from the two approaches. We find that the RDM models exhibit very
different elasticity patterns than their RUM counterparts. This difference is most apparent
when comparing the RUM and RDM conditional logit estimates. We also find that the RDM
based models require similar computing effort and time. In light of our findings, we feel
that this new set of models offers marketing academics and researchers a viable new tool
with which to investigate discrete choice behavior.

The rest of this paper is organized as follows: In the next section we discuss the notion of
a disutility minimizing consumer. We then formalize the RUM and RDM framework and
obtain the probability structures for each. We follow this with an application to data and a
discussion of the results obtained. We conclude with a discussion and directions for future
research.

2. The disutility minimizing consumer

Do consumers always maximize utility? We are certainly not the first to suggest that con-
sumers may frame decisions as a minimization problem. The consumer choice literature in
marketing abounds with examples where researchers have framed the consumer’s decision
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framework as one consistent with the minimization of some form of disutility. An early
example is the work of White (1978) who examines how consumers choose between three
methods of payments (i.e. credit card, check or cash). He argues that the consumer mini-
mizes the total transactions costs incurred in a choice situation and decomposes these costs
into fixed, variable and qualitative components. A very similar approach is adopted by Bell
et al. (1998) who propose a cost minimizing approach to the store choice problem. In their
application a consumer chooses a grocery store based on the expected fixed and variable
costs of shopping. (For other applications of the minimization decisions in discrete choice
frameworks see Gonul and Srinivasan, 1996; Dubin, 1986; Joskow and Mishkin, 1977; Ho
et al., 1998; Hobbs, 1997)

This paper relies on a very broad definition of “disutility” and it is critical that we spell
out the nature, scope and implications of what we mean by this term. Before beginning
that discussion, however, it is important to note that the “utility” construct used in most
marketing applications of discrete choice pertains to the indirect, conditional utility function.
The utility function is conditional because it is conditioned on other continuous household
decisions being made and is indirect because it involves the substitution of the budget
constraint into the direct utility function. In other words the “utility” function contains both
the benefits derived from choosing a given options and the costs that are incurred. Our
definition of “disutility” is similar in that it is a broad construct that includes all losses that
a consumer might incur by choosing a specified option net of benefits derived. Note that
while part of these losses may be strictly monetary (via price) they could also include other
components such as time, effort and other psychological costs (e.g., switching costs) that
create disutility.

The reader should note that in the discrete choice framework the notions of “Utility
Maximization” or “Disutility Minimization” are distinguished only in the eyes of the re-
searcher. Clearly any problem that can be constructed as utility maximization can be recast
as disutility minimization. The same is true for a number of theoretical constructs used in
understanding consumer behavior. For example, one might think of the utility from being
loyal to a brand as the reverse of the disutility or cost of switching. In general, benefits
minus costs are thought of as indirect utility while costs net of benefits may be interpreted
as disutility. The question whether a given consumer actively frames a decision problem as
utility maximization or otherwise is an open and unanswered question. Clearly, the extant
literature suggests that there are cases where the minimization frame is more a more appro-
priate descriptor of the decision scenario. A related issue is if there exist conditions under
which both approaches (maximization and minimization) yield the same choice models.
We return to this issue in a later section.

The above discussion clearly highlights two important aspects of discrete choice deci-
sions. First, any choice problem can adequately be represented in the form of a disutility
minimization problem and second, in certain cases the cost approach may be the appropri-
ate behavioral model. Given these basic ideas we now move to a more detailed analysis of
consumer decision making. In the section that follows, we begin with the classical RUM
approach to discrete choices and then move to analyzing the probability structures generated
by disutility minimization.



GENERALIZED REVERSE DISCRETE CHOICE MODELS 179

3. Stochastic utility and disutility based choice models

3.1. The random utility maximization framework

We start by revisiting the standard random utility models of discrete choice. In this section
we present only the barebones of the model and do not belabor the details. Assume that
the utility a consumer h gets from choosing option j can be described by the conditional,
indirect utility function as follows

U jh = u jh + ε jh . (1)

At this point we will assume that the reader understands the implications and assumptions
inherent in u jh . That is, the deterministic component u jh includes all those factors that
impact the utility that the consumer would obtain upon choosing option j from the set J .
The consumer then chooses the alternative that offers the maximum utility. This allows us
to depict the choice probability for alternative i as

Pih = Pr(Uih ≥ U jh : j ∈ J ), (2)

or

Pih = Pr(uih + εih ≥ u jh + ε jh : j ∈ J ). (3)

This expression, for the first alternative, can be represented (suppressing h)

Pu
1 =

∫ ∞

−∞

∫ u1+ε1−u2

−∞
· · ·

∫ u1+ε1−u J

−∞
F1,2,...,n dεn...dε2dε1. (4)

The rest of the probabilities can be computed in a similar manner. McFadden (1978)
showed that if we construct a generating function G(y1, y2 . . . , yn) that is defined on the or-
thant yk ≥ 0, is a non-negative function that is homogenous of degree one,3 that tends to +∞
for any element approaching +∞ and whose kth cross partial derivatives are nonnegative
when k is odd and nonpositive when k is even, then

F = exp(−G(y1, . . . , yn)), (5)

is a valid multivariate distribution function. In particular, the ε are said to jointly follow
a multivariate generalized extreme value (GEV) with generating function G. McFadden
(1978) also showed that under this distribution we can derive the choice probabilities in
closed form. For the sake of completeness and consistency we state his result in the form
of a lemma below (the h subscript is suppressed).

3 Ben-Akiva and Francois (1983) show that the generating function can be homogenous of degree µ > 0. In
this paper we assume µ = 1 to retain consistency with the models proposed by McFadden (1978, 1981).
Generalizing the analysis to incorporate arbitraty values of µ is straightforward.
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Lemma 1. Let G(y1, y2, . . . , yn) denote the generating function of a Generalized Extreme
Value distribution and letG = ∂G

∂yi
. If Ui = ui +εi with ε distributed GEV then the probability

structure consistent with random utility maximization can be depicted by

Pu
i = euiGi (eu1 , eu2 , . . . , eun )

G(eu1 , eu2 , . . . , eun )
(6)

Proof: See McFadden (1978)

The properties of the choice structure in Lemma 1 are well known and we do not repeat
them here. Details are available in McFadden (1978, 1981), Ben-Akiva and Lerman (1985)
and Anderson et al. (1992). Of course, the GEV is not the only multivariate distribution
function used in choice models and studies using the multivariate normal (resulting in the
Multinomial Probit) abound (See e.g., McCulloch and Rossi, 1994; Chintagunta, 1992.) In
those cases the choice expressions can be obtained by appropriate substitutions into (4).

3.2. A random disutility based discrete choice framework

We now present the disutility minimizing approach to the consumer’s problem. To begin we
need to specify the minimization program faced by the consumer. The consumer’s disutility
can simply be stated as

D jh = ξ (u jh) + ε jh (7)

where ∂ξ

∂u < 0. For the rest of this study we will assume that ξ (u jh) = −u jh = d jh .
The random disutility assumption then implies that the consumer chooses that option which
burdens her with the lowest disutility. In other words the probability of household j choosing
option i can be depicted as

Pih = Pr(Dih ≤ Dih : j ∈ J ) (8)

Let Fi be the derivative of F (the multivariate distribution function of ε) with respect
to the i th component, Fi j the derivative with respect to i and j , and so on. Consequently
F1,2,...,n denotes the derivative of F with respect to {1, . . . , n}. The probability of choosing
the first alternative can then be expressed as

Pd
1 =

∫ ∞

−∞

∫ ∞

d1+ε1−d2

· · ·
∫ ∞

d1+ε1−dJ

F1,2,...,n dεn...dε2dε1. (9)

In order to explore this expression further we will need some additional notation. These are
contained in the definitions listed below.

D1: The set Mi denotes those subsets of the power set P(J ) of J = { j : j = 1, 2, . . . , n}
that include the index i and have cardinality greater than one. Also letMJ = ⋃

j∈J M j .
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D2: �m is the set of disutilities (d) corresponding to the indices contained in m ∈ Mi , and
let �e

m consist of exponentiated elements of �m.
D3: |m| is the cardinality of the set m ∈ Mi .
D4: �i (�m) is the probability of i th disutility being the maximum of the disutilities defined

by the elements of �m; i.e. �i (�m) = Pr(di ≥ dk : dk ∈ �m).

We clarify the above definitions with a simple example: Imagine an index set J = { j :
j = 1 . . . 3}. The power set of J is denoted by

P(J ) = {(∅), (1), (2), (3), (1, 2), (1, 3), (2, 3), (1, 2, 3)}.

Now lets say we are interested in the index i = 1, then

M1 = {(1, 2), (1, 3), (1, 2, 3)},

and m = (1, 2, 3) is therefore one particular subset of M1. Also note that in this case
|m| = 3 and �m = {d1, d2, d3}. This allows us to express the following

�1(�m) = P(d1 ≥ d2, d1 ≥ d3). (10)

Using the notation described above the RDM discrete choice probabilities can be ex-
pressed fairly succinctly. We characterize these probabilities in the shape of the theorem 1.

Theorem 1. Define Di = di + εi , with di representing the deterministic component of
disutility, then for ε distributed with multivariate distribution function F(ε) the values

Pd
i = 1 −

∑
m∈M1

(−1)|m|�i (�m) (11)

define a probabilistic choice model from alternatives i ∈ J which is consistent with the
minimization of random disutilities.

Proof: See Appendix

Note that the expressions in Theorem 1 are general and not dependent on any particular
distribution function. If we assume the multivariate GEV distribution then explicitly solving
for these probabilities gives us the generalized reverse discrete choice framework. We
formalize this with the following lemma.

Lemma 2. Let G(y1, y2, . . . , yn) denote the generating function of a Generalized Extreme
Value distribution and let Gi = ∂G

∂yi
. If Di = di + εi with ε distributed GEV then the

probability structure consistent with random disutility minimization can be depicted by

Pd
i = 1 −

∑
m∈Mi

(−1)|m|
[

ediGi (�m)

G(�m)

]
(12)
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Proof: See Appendix

3.3. A behavioral interpretation

One quickly notices that even though the probabilities in (12) contain GEV type structures
they are far more involved than the conventional GEV choice models. An expansion of
(12) (as in equation A4 of the Appendix) reveals a similarity to the expansion of union set
probabilities (see e.g., Theorem 2, DeGroot p.g. 39.) To understand the behavioral intuition
behind this model notice that the probability of choosing option 1 out of four alternatives
can be thought of as

1 − Pr(D1 > D2) − Pr(D1 > D3) − Pr(D1 > D4)

+ Pr(D1 > D2, D1 > D3) + Pr(D1 > D2, D1 > D4)

+ Pr(D1 > D3, D1 > D4) − Pr(D1 > D2, D1 > D3, D1 > D4). (13)

In other words, the random disutility choice probability of choosing option j can be
thought of being one minus the probability of d j being larger that all dk �= j . In (13), the first
row simply reflects this aspect of the intuition. The second and third row simply account for
any double counting that might occur. More generally, this approach arrives at the choice
probabilities by simply deducting from unity the probability of being greater (in pair-wise
comparisons) than other disutilities, then adding back the probability of being the maximum
disutility in all triples and so on until one gets to the m-tuples. The consumer could therefore
be thought of making comparisons of the focal alternative with other alternatives to ascertain
if it is the minimum disutility alternative. The structure of these probabilities is very different
from the RUM choice probabilities proposed by McFadden (1978). Even though it is not
completely “precise” we feel compelled to point out the parallels between the RUM-RDM
relation and the behavioral differences between “selecting” alternatives and “not-rejecting”
them. In the RUM case the consumer evaluates the alternative and selects the best one. The
RDM case is more in line with the idea that a consumer compares the options and rejects all
but one. We would like to make it clear that this parallel is simply coincidental. While there
might be many behavioral interpretations of the models described by Lemma 1 the reader
should note that these interpretations are not based any structural or theoretical arguments.
They are, however, useful in helping us understand the differences in the two approaches
to discrete choice models. In the following section we derive and contrast popular RUM
models and their RDM counterparts.

3.4. Illustrating the RDM and RUM GEV frameworks

Before presenting specific models, we present the general GEV probabilities under the
RUM and RDM assumptions. In what follows, we use a three alternative example since it
is the simplest specification in which to examine the structural differences between the two
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frameworks. Let the generating functions be as follows:

Gu(y) = Gu(y1, y2, y3) = G(eX ′
1β, eX ′

2β, eX ′
2β) (14)

Gd (ỹ) = Gd (ỹ1, ỹ2, ỹ3) = G(eX ′
1δ, eX ′

2δ, eX ′
2δ). (15)

In the above, Gu(y) and Gd (ỹ) are the generating functions for the RUM and RDM
specifications respectively, β and δ are parameters. We are implicitly assuming here that
the utilities (and disutilities) are linear and that di = ξ (ui ) = −ui . Since we have specified
ui = X ′

iβ, we can write di = X ′
iδ.4

Applying Lemma 1 we see that the RUM GEV probabilities are of the form:

Pu
1 = eX ′

1βG1(eX ′
1β, eX ′

2β, eX ′
2β)

G(eX ′
1β, eX ′

2β, eX ′
2β)

. (16)

Pu
2 = eX ′

2βG2(eX ′
1β, eX ′

2β, eX ′
2β)

G(eX ′
1β, eX ′

2β, eX ′
2β)

. (17)

Pu
3 can be derived as 1 − Pu

1 − Pu
2 . In the sequel we do not present the probability for the

third alternative.
Similarly, upon applying Lemma 2 we obtain the RDM GEV probabilities,

Pd
1 = 1 − eX ′

1 δG1(e−X ′
1 δ, eX ′

2 δ)

G(eX ′
1
δ
, eX ′

2 δ)
− eX ′

1 δG1(eX ′
1 δ, eX ′

3 δ)

G(eX ′
1 δ, eX ′

3 δ)

+ eX ′
1 δG1(eX ′

1 δ, eX ′
2 δ, eX ′

2 δ)

G(eX ′
1 δ, eX ′

2 δ, eX ′
2 δ)

. (18)

Pd
2 = 1 − ex ′

2 δG2(ex ′
1 δ, ex ′

2 δ)

G(ex ′
1

δ, ex ′
1 δ)

− ex ′
2 δG2(ex ′

2 δ, e−x ′
3 δ)

G(ex ′
2 δ, ex ′

3 δ)

+ ex ′
2 δG2(ex ′

1 δ, ex ′
2 δ, ex ′

2 δ)

G(ex ′
1 δ, ex ′

2 δex ′
2 δ)

. (19)

The reader will note that the RDM probabilities are more complicated since they involve
more terms in each expression. This complication, unfortunately, only increases with the
addition of more alternatives. The specification does have its advantages which will become
clear in later sections.

While the above GEV probabilities provide a general idea of the nature of the probability
structure they do not offer the exact form of the models that might be implemented. We
therefore move to a discussion of specific models.

4 Note that the signs of the estimated β ′s and δ′s will be the opposite of each other since RUM treats the X ′s as
utility enhancing while RDM treats it as cost enhancing. In the tables presented in the empirical application we
reverse the signs of δ to facilitate comparison.
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3.5. The random disutility multinomial logit model (RDMNL)

The first model we present uses the simplest and probably the most popular generating
function in the GEV family. This function is described as

G(y) =
n∑

i=1

yi . (20)

As earlier, in order to compare the properties of the two specifications we will use a simple
three alternative choice framework. In particular assume that G(y1, y2, y3) = y1 + y2 + y3.
Then for the RUM framework, using Lemma 2, we obtain the familiar multinomial logit
specification. Letting, yi = eui = eX ′

i β for i = 1 . . . 3 we can write this as,

Pu
1 = eX ′

1β

eX ′
1β + eX ′

2β + eX ′
3β

(21)

Pu
2 = eX ′

2β

eX ′
1β + eX ′

2β + eX ′
3β

. (22)

As mentioned before Pu
3 can be derived as 1 − Pu

1 − Pu
2 .

The derivation of the corresponding RDM probabilities are straightforward. Using
Lemma 2 we obtain the RDM choice probabilities and can show that

Pd
1 = 1 − eX ′

1δ

eX ′
1δ + eX ′

2δ
− eX ′

1δ

eX ′
1δ + eX ′

3δ
+ eX ′

1δ

eX ′
1δ + eX ′

2δ + eX ′
3δ

(23)

Pd
2 = 1 − eX ′

2δ

eX ′
1δ + eX ′

2δ
− eX ′

2δ

eX ′
1δ + eX ′

3δ
+ eX ′

2δ

eX ′
1δ + eX ′

2δ + eX ′
3δ

. (24)

Collecting the terms and simplifying yields the following expressions,

Pd
1 = (eX ′

2δ+X ′
3δ)(2eX ′

1δ + eX ′
2δ + eX ′

3δ)

(eX ′
1δ + eX ′

2δ)(eX ′
1δ + eX ′

3δ)(eX ′
1δ + eX ′

2δ + eX ′
3δ)

(25)

Pd
2 = (eX ′

1δ+X ′
3δ)(eX ′

1δ + 2eX ′
2δ + eX ′

3δ)

(eX ′
1δ + eX ′

2δ)(eX ′
2δ + eX ′

3δ)(eX ′
1δ + eX ′

2δ + eX ′
3δ)

. (26)

We term this model the Random Disutility Multinomial Logit (RDMNL). The model
presented in (23) is identical to the reverse discrete choice model proposed by Anderson
and De Palma (1999). This is because the additive generating function described by (20)
yields a joint density that is a product of i.i.d. extreme value variables. Thus our GEV
framework, as expected, nests their model. The RDMNL choice probabilities have some
interesting properties which we discuss next.

A key feature of the RDMNL is that it does not exhibit the Independence from Irrelevant
Alternatives (IIA) property. This is apparent from the probability structure denoted by (23).

In particular notice that Pd
1

Pd
2

is not independent of d3. This allows one to use the RDMNL as a
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possible alternative specification and test for IIA. It should also be pointed out that the set of
parameters one obtains, via estimation, from either model are equivalent in their information
content. In other words, since we have defined ui = X ′

1β and correspondingly di = X ′
iβ

it is always true that dim (β) = dim(δ), i.e. there are an identical number of parameters.
Further the impact that particular elements of δ and β have on the choice probabilities are
of comparable magnitude (while opposite in sign). While it might turn out that δ̂ �= −β̂,
theory suggests that their impacts should be similar. This equivalence, as will be apparent
later, is true for all pairs of matching RUM/RDM models in our analysis.

3.6. The Random Disutility Nested Logit (RDNL)

We now turn our attention to another popular generating function. This generating function
yields the nested logit model, which is often seen as a simpler alternative to the economet-
rically cumbersome multinomial probit model. The generating function is assumed to be of
the form

G(y) =
K∑

k=1

( ∑
i∈Ck

y
1

1−σk
i

)1−σk

, (27)

where Ck reflects the choice set corresponding to nest k. In order for the function to be
compatible with utility maximization we need 0 ≤ σk ≤ 15 Again, for purposes of exposi-
tion we will deal with a three alternative example with alternatives 2 and 3 forming a nest.
Assuming

G(y1, y2, y3) =
(

y1 +
[

y
1

1−σ

2 + y
1

1−σ

3

]1−σ)
, (28)

and invoking Lemma 1, we have (using yi = eui = eX ′
i β as before)

Pu
1 = eX ′

1β

eX ′
1β + (

e
X ′

2β

1−σ + e
X ′

2β

1−σ

)1−σ
(29)

Pu
2 = e

X ′
2β

1−σ

(
e

X ′
2β

1−σ + e
X ′

3β

1−σ

)−σ

eX ′
1β + (

e
X ′

2β

1−σ + e
X ′

3β

1−σ

)1−σ
. (30)

A similar exercise using Lemma 2 yields the Random Disutility Nested Logit (RDNL)

5 Note that the restriction on σk follows from the requirements for a valid GEV generating function (for details
see Ben-Akiva and Lerman, 1985). Hence it follows that the restriction required for RUM is also necessary and
sufficient for RDM.
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choice probabilities,

Pd
1 = 1 − eX ′

1δ

eX ′
1δ + eX ′

2δ
− eX ′

1δ

eX ′
1δ + eX ′
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1δ + (

e
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3δ
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)1−σ
(31)

Pd
2 = 1 − eX ′
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. (32)

Notice that as σ → 0 the choice probabilities coincide with those in the earlier example
(23). Also we would like to point out that the term “nested” may or may not apply to the
RDNL since one might not be able to decompose the probabilities as one can in standard
NL model. However, the interpretation and relevance of the parameters are similar in both
models.

3.7. Other variants of random disutility GEV models

The RDMNL and the RDNL simply illustrate two of the many structures that are included
in the RDM-GEV model space. It should be apparent that any GEV model obtained in the
RUM realm has a corresponding reverse analog in the form of a RDM model. For example
we can obtain reverse discrete choice versions of the Paired Combinatorial Logit (Wen and
Koppelman, 1999), The Cross-Nested Logit (Vovsha, 1997) and the Generalized Nested
Logit (Koppelman and Wen, 2001; Swait, 2000).

In a recent paper, Swait(2003) proposes an interesting extension of the GEV framework.
He shows out that an additive function of GEV generating functions is a valid generating
function itself. Coupled with the recent work of Karlstrom (2000) this vastly enriches the
gamut of GEV models from which the researcher can choose an appropriate generating
function. The fact that each of these generating functions has both a disutility and utility
based discrete choice model, that are distinct in form and structure from each other, greatly
expands the option set available to the applied marketing researcher.

4. When does utility maximization = disutility minimization?

Before concluding our theoretical analysis of reverse discrete choice models we revisit
an issue raised earlier in the paper. When do the random utility approach and the random
disutility approach yield the same probability structure? For the probability structures under
disutility minimization and utility maximization to be identical we need each corresponding
probability to be equal. In other words we need Pu

i = Pd
i for all i ∈ J . Assume, as

earlier, that utilities are simply negated disutilities (or vice versa). That is we can write
(ui = −di : i ∈ J ), then it has to be that the answer lies in the structure of the density that
underlies the random components. Clearly if we could replace each εi with −εi we would
have the two probability structures being identical. This in turn implies that the densities
f (ε) and f (−ε) have be identical or in other words the error density has to satisfy a weak
form of symmetry.
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A general class of densities that satisfy this property is the set of spherically symmetric
distributions (SSD). This family of multivariate densities can be defined using a stochastic
representation (Fang et al., 1990)

x d= r · v , (33)

where v is a uniform random vector distributed on the unit hypersphere, r is a positive
random variable independent of v and “

d=” signifies equivalence in distribution. This class
includes most well known distributions such as the Multivariate Normal, Multivariate t and
the Multivariate Cauchy. We now state the following theorem.

Theorem 2. If {ui = di : i ∈ J } and if ε
d= (r · v) then Pd

i = Pu
i for all i ∈ J .

Proof: See Appendix.

Since the multivariate normal density falls with the SSD class, all varieties of the Multi-
nomial Probit will result in identical choice structures for RUM and RDM. While Anderson
and de Palma (1999) recognized this equivalence for the I.I.D. multivariate normal assump-
tion the above theorem formally extends it to all spherically symmetric distributions. This
theorem also indirectly shows that the RDM and RUM frameworks arise primarily on ac-
count of the skewness of the Extreme Value density. For a more detailed discussion of this
issue see Anderson and De Palma (1999).

5. Application to brand choice models

5.1. Data

In this section we focus on the empirical implementation of some of the models described
earlier. We estimate and compare the standard multinomial logit and nested logit to their
random disutility versions using datasets that are publicly available and have been used
in earlier studies. In particular we use the yogurt and cracker datasets used by Jain and
Chintagunta (1994). Summary statistics of the datasets are reported in Table 1.

5.2. Model specification and methodology

Since the primary purpose of this section is the empirical comparison of the two choice
paradigms we estimate simple but popular implementations of the models seen in the litera-
ture and their random disutility counterparts. While we refrain from using more complicated
models since our choice of specification might confound the comparison, future research
might look at more intricate specifications. In what follows we present the results from four
particular models. These models are described below.
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Model Mnemonic Description

i. MNL Multinomial Logit

ii. RDMNL Random Disutility Multinomial Logit

iii. HMNL Heterogeneous Multinomial Logit

iv. HRDMNL Heterogeneous Random Disutility Multinomial Logit

v. NL Nested Logit

vi. RDNL Random Disutility Nested Logit

For all homogeneous parameter models the random utility and disutility specifications
are as follows:

uhjt = β0 j + β1PRICE jt + β2FEAT jt + εu
hjt

dhjt = δ0 j + δ1PRICE jt + δ2FEAT jt + εd
hjt . (34)

The models are of the form illustrated in (21) and (23). The usual derivation allows us to
obtain the relevant likelihood functions to be maximized,

L =
H∏

h=1

T∏
t=1

J∏
j=1

P∗
hjt (ϑ)ζhjt . (35)

Table 1. Summary statistics for Cracker and Yogurt data

Cracker data Yogurt data

Variable Brand Mean Std. dev. Variable Brand Mean Std. Dev.

Market Share Sunshine 0.07260 0.25952 Market Share Yoplait 0.33914 0.47351
(proportion) Keebler 0.06865 0.25290 (proportion) Dannon 0.40216 0.49043

Nabisco 0.54435 0.49810 Weight 0.22927 0.42045

Pvt. label 0.31440 0.46435 Hiland 0.02944 0.16906

Feature Sunshine 0.03767 0.19042 Feature Yoplait 0.05597 0.22991
(proportion) Keebler 0.04253 0.20182 (proportion) Dannon 0.03773 0.19058

Nabisco 0.08657 0.28125 Weight 0.03773 0.19058

Pvt. label 0.04708 0.21185 Hiland 0.03690 0.18855

Price Sunshine 0.95703 0.13292 Price Yoplait 0.10682 0.01906
($ per unit) Keebler 1.12594 0.10638 ($ per Oz) Dannon 0.08163 0.01063

Nabisco 1.07923 0.14478 Weight 0.07949 0.00774

Pvt. label 0.68073 0.12407 Hiland 0.05363 0.00805

Observations 3292 Observations 2412

households 136 households 100
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Here P∗ = Pu or Pd for the RUM and RDM models respectively, ϑ is the vector of
relevant parameters and ζhjt is a choice indicator equalling one if household h chooses
brand j at time t and zero otherwise. Maximizing L gives us estimates of the parameters of
interest.

Incorporating a continuous or discrete mixing distribution, to represent heterogeneity in
the parameters, is as straightforward in the RDMNL as in the standard MNL. In our analysis
we restrict ourselves to incorporating heterogeneity via a continuous normal mixing density
for the utility intercepts and price. Thus the utility/disutility functions are

uhjt = β0 jh + β1hPRICE jt + β2FEAT jt + εu
hjt

(36)
dhjt = δ0 jh + δ1hPRICE jt + δ2FEAT jt + εd

hjt .

We assume that β0h
d= φ(β0, �β0) and β1h

d= φ(β1, σ
2
β1) and similarly that δ0h

d=
φ(δ0, �δ0 ) and δ1h

d= φ(δ1, σ
2
δ1

), with φ denoting the normal distribution. Now, let ϑ denote
the relevant (utility or disutility) parameters and  its corresponding ‘deep’ parameters (i.e.
the heterogeneity mean and variance terms). This allows us to write the likelihood for the
HMNL/HRDMNL as

L =
H∏

h=1

∫
ϑ

T∏
t=1

J∏
j=1

[
P∗

hjt (ϑ)
]ζhjt

φ(ϑ |) dϑ . (37)

We use a quasi Monte-Carlo (QMC) simulation approach to approximate the integrals in
the likelihood and depict the approximated log-likelihood as

l̂nL =
H∑

h=1

ln

[
1

R

R∑
r=1

T∏
t=1

J∏
j=1

(
P∗

hjt

(
ϑ (r ), �

))ζhjt

]
, (38)

where ϑ (r ) are draws from the relevant distributions and � denote the rest of the parame-
ters. In our implementation of QMC approximation we use randomized, scrambled Halton
sequences (Bhat, 2001, 2003) rather that pseudo random numbers. Using such low discrep-
ancy sequences greatly enhances the efficiency of the approximation and allows for more
precise estimates from a smaller number of simulation runs. For simplicity, our estima-
tion procedure assumes that the covariance matrix is a positive definite matrix with zero
off-diagonal terms (i.e. covariances are assumed to be zero).

In the estimation of the NL and RDNL models we use identical nests. Since our in-
terest is restricted to model performance, the choice of the ‘right’ nest is not an issue
and we therefore do not permute over multiple nests. Having said that, however, we
must point out that our choice of nests is fairly intuitive. For example in the Cracker
data we frame the nest as {Private Label, National Label} with three brands in the
{National Label} branch. The nests for the three datasets are described by the structures
below.
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Yogurt: {Major Brands, Minor Brands}
{Major Brands} ⇒ {Yoplait, Dannon}
{Minor Brands} ⇒ {Hiland, Weight Watcher}

Cracker: {National Label, Private Label}
{National Label} ⇒ {Keebler, Nabisco, Sunshine}
{Private Label} ⇒ {Store Brand}

The probabilities for the models are as in (29) and (31). As with the MNL and RDMNL
we use maximum likelihood to estimate the NL and RDNL models. The derivation of the
likelihood is similar to the process described earlier and we do not repeat it here.

5.3. Empirical results

Parameter estimates from our analysis are presented in Tables 2 and 3. We begin by ex-
amining the estimates and other auxiliary measures for the MNL and RDMNL models in
detail.

5.3.1. Basic homogeneous brand choice models. A first glance at the results shows that the
in-sample and out-of-sample fit statistics for the homogeneous models (MNL and RDMNL)
do not resolve themselves into favoring one framework in particular. The parameter

Table 2. Estimation results (Yogurt data).

MNL RDMNL HMNL HRDMNL NL RDNL

Yoplait (s.e.) 4.4502 (0.187) 3.0255 (0.134) 4.9624 (0.3242) 4.3982 (0.5234) 4.3174 (0.1932) 2.487 (0.0919)
std.dev. 2.714 (0.2106) 2.804 (0.1986)

Dannon 3.7156 (0.145) 2.4653 (0.093) 4.419 (0.2506) 2.9729 (0.1936) 3.6719 (0.1425) 2.033 (0.107)
std.dev. 1.9329 (0.1731) 3.0027 (0.2513)

Weight 3.0744 (0.144) 1.9701 (0.089) 1.035 (0.3433) 1.8381 (0.2376) 2.9242 (0.1658) 1.2674 (0.0752)
Watcher

std.dev. 4.6318 (0.3438) 2.3133 (0.2799)

Price −36.658 (2.436) −28.290 (1.966) −43.2823 (4.3468) −33.6957 (5.7841) −31.645 (3.657) −21.9085 (2.877)
std.dev. 21.8045 (4.346) 30.9073 (3.6721)

Feature 0.4914 (0.120) 0.4019 (0.095) 0.7962(0.1871) 0.7572 (0.1635) 0.4209 (0.116) 0.1864 (0.0841)

(1 − σ ) 1.5429 (0.252)a 1.7382 (0.271)b

−2LL 5313.8 5321.7 2494.2 2469.5 5310.7 5350.1

AIC 5323.8 5331.7 2512.2 2487.5 5322.7 5362.1

BIC 5352.7 5360.6 2564.3 2539.6 5357.4 5396.8

OOSc BIC 1090.3 1091.6 687.8 669.0 1091.2 1098.9

aNot consistent with RUM.
bNot consistent with RDM.
cOut of Sample.
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Table 3. Estimation results (Cracker data).

Variable MNL RDMNL HMNL HRDMNL NL RDNL

Sushine −0.6624 (0.090) −0.4081 (0.058) −0.182 (0.1776) −0.5722 (0.1291) 0.0619 (0.1292) ns 0.0937 (0.1001)
std. dev. 2.741 (0.2029) 2.0463 (0.1484)

Keebler −0.1688 (0.117) −0.0445 (0.077) −0.1061 (0.2321) 0.1865 (0.1582) 0.4683 (0.1206) 0.4339 (0.0992)
std.dev. 2.6136 (0.1726) 2.0215 (0.1303)

Nabisco 1.7928 (0.101) 1.3643 (0.075) 2.5005 (0.2374) 1.9151 (0.1583) 1.6428 (0.0971) 1.4321 (0.0742)
std.dev. 3.0075 (0.1847) 2.4631 (0.1434)

Price −3.1247 (0.209) −2.2453 (0.154) −2.9122 (0.3953) −2.4114 (0.3231) −2.5065 (0.239) −2.1107 (0.172)
std.dev. 4.715 (0.5133) 4.2491 (0.3504)

Feature 0.4961 (0.096) 0.3962 (0.078) 0.8703 (0.1506) 0.7437 (0.1267) 0.3028 (0.08299) 0.2538 (0.0699)

(1 − σ ) 1.6938 (0.2049)d 1.5699 (0.1650)e

−2LL 6695.4 6694.7 3685.4 3625.8 6674.7 6671.7

AIC 6707.4 6706.7 3705.4 3645.8 6688.7 6685.7

BIC 6744.0 6743.3 3766.4 3706.8 6731.4 6728.4

OOS f − BIC 1373.5 1371.2 891.8 878.7 1370.7 1369.8

d Not consistent with RUM.
eNot consistent with RDM.
f Out Of Sample.

estimates6 presented in the tables are based on the complete data. For the out-of-sample
fit/prediction statistics we used the following procedure. First we split the data randomly
into hold-out (20%) and calibration (80%) samples. We then estimated the models on using
only the calibration data and applied the estimates obtained to the hold-out sample. This
gave us the relevant fit/prediction statistics. For the yogurt data the MNL model has a slightly
better fit both within sample and out-of-sample than the RDMNL. This is reversed for the
cracker data. In the datasets studied no two pairs of models with homogeneous parameters
are significantly different. This should not be surprising since the underlying error structure
is the essentially the same. We cannot, however, make a generalization at this point. Indeed,
there might be datasets where one approach fits better than the other.

A closer look at the parameter estimates shows that the signs of all estimates from the
RDMNL match those obtained in the MNL. This is true both for the yogurt and cracker
results. We do find, however, that the estimates from the RDMNL are consistently smaller
(in absolute value) than their MNL counterparts. This in itself does not imply that the effects
of the marketing mix variables in the RDMNL are lower than those in the MNL since the
estimates are identified only up to a scale factor. It does, however, lead us to delve deeper
into more robust measures such as own and cross price elasticities. The reader will recall
that the RDMNL does not exhibit IIA and hence its elasticity matrix should be significantly
different from its MNL counterpart.

We derived the elasticity matrices for each model and dataset. These are presented in
Tables 4 and 5. The elasticities are estimated at the mean market share and prices of

6 Note that the signs for the estimates in the random disutility models have been reversed to facilitate comparison.
See footnote [4]
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Table 4. (a) Yogurt data elasticities from MNL model. (b) Yogurt
data elasticities from RDMNL model.

Yoplait Dannon Weight Hiland

(a)
Yoplait −2.5973 1.2130 0.6730 0.0544

Dannon 1.3254 −1.7931 0.6730 0.0544

Weight 1.3254 1.2130 −2.2411 0.0544

Hiland 1.3254 1.2130 0.6730 −1.9117

(b)

Yoplait −2.5221 1.0751 0.7213 0.0743

Dannon 1.1778 −1.6916 0.6679 0.0654

Weight 1.4181 1.1986 −2.3591 0.0969

Hilanrd 2.1491 1.7255 1.4255 −3.1674

Table 5. (a) Cracker data elasticities from MNL model. (b) Cracker
data elasticities from RDMNL model.

Sunshine Keebler Nabisco Pvt. label

(a)
Sunshine −2.7875 0.2313 1.8644 0.6669

Keebler 0.2029 −3.2869 1.8644 0.6669

Nabisco 0.2029 0.2313 −1.5079 0.6669

Pvt. label 0.2029 0.2313 1.8644 −1.4602

(b)

Sunshine −3.5208 0.6857 1.8079 0.9494

Keebler 0.5983 −4.1722 1.8128 0.9534

Nabisco 0.1864 0.2142 −1.2282 0.5126

Pvt. label 0.2666 0.3068 1.3959 −1.2557

each brand. The tables indicate a number of significant differences between the MNL and
RDMNL elasticity measures. Recall that the cross price share elasticity of x with respect to
y in standard MNL models is

εu
xy = ∂ Pu

x

∂py

py

Pu
x

, (39)

which simplifies to

εu
xy = −Pu

y pyβ. (40)

Clearly εxy , is independent of x and is therefore constant, irrespective of the choice of x.
This, however, is not true for the RDMNL, which has more complicated (and hence flexible)
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elasticity structures. A first glance at the tables reveals, as expected, that the cross price
elasticities in the RDMNL matrices are not constant for each brand while they are in the
MNL matrices. A second distinction is that the MNL elasticity estimates seem to be smaller
(in absolute value) for low market share brands and higher for the larger share ones than their
corresponding RDMNL estimates. For example Nabisco is the highest share brand in the
cracker category and has a MNL own price elasticity of −1.5078. The RDMNL estimate is
−1.2282. Similarly Keebler, which has the lowest market share has an own price elasticity
of −3.2871 in the MNL table and −4.1720 in the RDMNL version. What the elasticity
matrices show is that when the model is constrained by the IIA property the elasticities are
also artificially constrained

The tables highlight the fact that the RDMNL approach results in elasticity measures that
are significantly different from its MNL counterpart. As one would expect, the RDMNL
cross-elasticities are not the same within each column since the IIA property has been
relaxed. In the earlier literature the only way to deal with the IIA issue (which leads to the
constraints on the elasticity matrix) was to enhance the model by adopting a nested approach,
adding heterogeneity or by estimating a more general but econometrically cumbersome
multinomial probit model. The RDMNL offers a simple yet effective way of arriving at
cross price elasticities that are realistic without imposing any additional assumptions on
the modelling framework. The aim of our analysis was to point out some key distinctions
between the RDMNL and the MNL approaches. Our discussion above is simply a first look
at these models. Future research might look at various other facets of comparison.

5.3.2. Heterogeneous parameter models. The incorporation of heterogeneity improves
the fit of both models significantly and all heterogeneity parameters are significant. In both
data sets the HRDMNL model outperforms the HMNL model in terms of fit and prediction
creteria. This is especially intriguing since the homogeneous models exhibit no significant
differences between the two frameworks. We conjecture that the relaxation of the IIA when
coupled with the added flexibility of heterogeneous parameters in the random disutility
framework allows for a closer approximation to the true underlying patterns of choices
observed in the data.

The estimates from the heterogenous (random coefficients) versions of MNL and
RDMNL seem to follow the same pattern as their homogenous counterparts. All coeffi-
cients are a bit smaller in the random disutility models versions. Again, this patern does not
imply that the effect of price is lower in the random disutility model and we need to examine
the elasticity matrices to make a better comparison. Since the heterogeneous MNL model
does not suffer from the IIA problem at the aggregate level examining and comparing these
elasticities might provide some interesting insights. Tables 6 and 7 depict the elasticities
for the two datasets based on the estimates from the heterogenous models. We focus our
attention on the Yogurt data (Tables 4 and 6) in the discussion that follows.

The elasticity estimates obtained via the heterogeneous specifications are very similar to
those obtained by Jain et al. (1994). Further, the elasticity matrices based on the random
utility and disutility versions do not exhibit major differences. This is to be expected, since
the IIA property now no longer applies in the heterogeneous MNL model. What is more
interesting is that the pattern of elasticites in the RDMNL model (Table 4b) is similar
to those obtained in the heterogeneous framework. For example, Hiland was seen to be
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Table 6. (a) Yogurt data elasticities from HMNL model. (b) Yogurt
data elasticities from HRDMNL model.

Yoplait Dannon Weight Hiland

(a)
Yoplait −1.8967 0.8692 0.3841 0.0723

Dannon 0.9246 −1.4045 0.4619 0.0921

Weight 0.8341 0.8817 −1.6724 0.0746

Hiland 1.4736 1.7776 0.7418 −2.4839

(b)

Yoplait −1.4767 0.5439 0.3349 0.1141

Dannon 0.6745 −1.1649 0.3852 0.1251

Weight 0.8040 0.7462 −1.6936 0.1979

Hiland 1.7558 1.5471 1.2264 −2.8356

Table 7. (a) Cracker data elasticities from HMNL model. (b) Cracker
data elasticities from HRDMNL model.

Sunshine Keebler Nabisco Pvt. label

(a)

Sunshine −1.4519 0.0951 0.6046 0.6170

Keebler 0.0776 −1.1142 0.2620 0.4610

Nabisco 0.0601 0.0307 −0.5128 0.2575

Pvt. label 0.3144 0.2810 1.2902 −1.2043

(b)

Sunshine −1.5079 0.1145 0.5542 0.6913

Keebler 0.0806 −1.0016 0.1485 0.4680

Nabisco 0.0584 0.0206 −0.5281 0.2751

Pvt. label 0.3297 0.3123 1.2093 −1.1937

the most elastic in the RDMNL framework and this is borne out in both the HMNL and
HRDMNL based elasticity matrices. We also find that the own and cross elasticites are
somewhat overstated when heterogeneity is ignored in the RDMNL model suggesting that
while the RDMNL is more flexible at the individual household level it fails to account
for the differences across households. This, in part, also explains why coefficients from
the two approaches are different even with the incorporation of heterogeneity. The random
utility logit models continue to exhibit from the IIA property at the individual level. In
other words, if we conditional on knowing a particular household’s parameters, standard
logit type probabilities and elasticities will be obtained. The random disutility models, on
the other hand, do not exhibit IIA at the individual household level. While both approaches
estimate the same aggregate elasticity matrix they differ significantly at the disaggregate
level and therefore in how these matrices are constructed.
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5.3.3. Other models. The NL and RDNL yield further evidence of the pattern mentioned
earlier. Interestingly, both the NL and the RDNL find that the (1 − σ ) estimate was greater
than one for Cracker and Yogurt data hence rejecting the hypothesis of RUM and RDM.
This could be on account of the choice of the nesting pattern chosen or because there is
no nesting to begin with. Irrespective of what drives this finding, the facet important to us
is the consistency of the two approaches. The findings reiterate the validity of the RDM
approach as a viable discrete choice framework.

In some preliminary attempts we have had moderate success in implementing more
complex GEV models such as those based on the FinMix generating function proposed by
Swait (2003) and the Generalized Nested Logit model (Koppelman and Wen, 2001; Swait,
2000). In some cases we ran into a local optima problem when the starting parameters
were not close to the global maxima. This was true for both the RDM and the RUM
specifications and therefore has to do more with the inherent complexity of the underlying
model and density function than with the choice of the decision framework. We relegate a
more detailed analysis of such complex models to future research.

6. Discussion and implications

An issue that has yet to be discussed pertains to when one should choose the RDM approach
over RUM and vice versa. Given the recency of the RDM approach there is not enough
theoretical and/or empirical evidence to provide strict guidelines for such a choice. However,
based on our experience (albeit short) with the two approaches we conjecture that the
following factors will be important determinants of this choice. First, the structure of the
problem being dealt with might dictate (or in the least influence) which framework to adopt.
For example the Bell and Lattin (1999) store choice problem lends itself quite naturally to
the RDM framework.

Second, the nature of the product/service being investigated might play a role. The trans-
portation choice literature provides a good illustration where the individual is usually as-
sumed to be minimizing transportation costs (since one could argue that the utility derived
by reaching one’s destination is the same across transportation choices). More generally,
one could argue that product categories characterized by offerings that are inherently ho-
mogeneous in the benefits they provide lend themselves to the RDM approach since price
may be the only variable driving decisions. Future research might be able to substantiate
this argument by estimating and comparing RDM/RUM models over a number of product
categories.

Third, if the choice is restricted to the MNL and the RDMNL the researcher’s prefer-
ences with respect to the IIA property might play a role in determining the framework
used. The reader should keep in mind that the IIA property is not necessarily “bad” and
may, in fact, represent certain choice situations accurately. We note, however, that the
RDM models proposed in this paper and their subsequent empirical implementations have
yielded results that have significant differences from their RUM counterparts. In our opin-
ion the foremost among these is the discrepancy between the elasticity measures generated
by the two approaches. Given that the flexibility in the RDM elasticity matrix is driven,
at least in part, by the relaxation of the IIA property and that the RDMNL fulfills the
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need for a simple choice framework that does not exhibit this property, the decision to
choose between the two models might boil down to the applicability of the IIA property
in the problem under investigation. This crux of this discussion suggests that managers
(and researchers) should estimate choice models based on both decision frameworks and
check for consistency in terms of the elasticity measures derived. The RDMNL model
may also be used as a basis to develop a more formal specification test. Estimating both
models (i.e. the RDMNL and the MNL) and then using the relevant Vuong (1989) statis-
tic might be a simple way of testing for IIA. An investigation of the power of such tests,
the derivation of the test statistic and subsequent implementation are avenues for future
research.

To conclude this discussion we note that the RDM approach offers researchers and
managers a simple yet viable framework to model choices without relying on traditional logit
type models. As our results show, both homogeneous and heterogeneous imlementations
of the RDM models are straightforward to estimate and perform well. There remains, of
course, much more to do to ascertain the general applicability of these models which we
feel future research might address.

7. Conclusion

The RDM framework has potential applicability in numerous fields apart from the scanner
based brand choice applications presented in this paper. One could think using the proposed
random cost based models in areas such as auction theory, conjoint analysis, theoretical and
empirical IO and any other area that has uses discrete choice models. In most cases we don’t
expect there to be major differences in the results obtained via such substitution. However,
a quick glance at the results obtained from choice models in this paper suggests that we
might find new insights into processes and behavior that have till now been thought to be
fairly robust. As mentioned in an earlier section, the RDM approach opens up a vast array
of models that have not been tested yet. We hope that this paper spurs others to investigate
this new model space.

Appendix

Preliminary definitions

Definition 1. F is a multivariate distribution function such that F = F(ε1, ε2, . . . , εn).

Definition 2. The density function can be denoted as F1,...,n = ∂n F
∂ε1...∂εn

Definition 3. For any element ε j = −∞ the distribution function F and the marginal
density function F1,..., j−1, j+1,...,n = ∂n−1 F

∂ε1...∂ε j−1∂ε j+1..∂εn
are equal to zero. (Since the probability

of any element being less than −∞ is zero)
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Definition 4. Using the above definitions we have∫ ∞

z
F1,...,ndε j =

∫ ∞

−∞
F1,...,ndε j −

∫ z

−∞
F1,...,ndε j

= (F1,..., j−1, j+1,...,n|ε j =∞ − F1,..., j−1, j+1,...,n|εn=−∞ )

− (F1,..., j−1, j+1,...,n|εn=z − F1,..., j−1, j+1,...,n|εn=−∞)

= F1,..., j−1, j+1,...,n|ε j =+∞ − F1,..., j−1, j+1,...,n|εn=z (A1)

Proof Theorem 1: Expanding the probability of choosing alternative 1 we have

Pd
1 =

∫ ∞

−∞

∫ ∞

d1+ε1−d2

. . .

∫ ∞

d1+ε1−dn

F1,2,...,ndεn . . . dε2dε1

=
∫ ∞

−∞

∫ ∞

d1+ε1−d2

. . .

∫ ∞

d1+ε1−dn−1

× (F1,2...,n−1|εn=+∞ − F1,2...,n−1|εn=d1+ε1−dn ) dεn . . . dε2dε1

=
∫ +∞

−∞

 F1(ε1, +∞, . . . ,+∞) − ∑n
j=2 F1(ε1, d1 + ε1 − d j , ε− j = +∞)

+ ∑n−1
j=2

∑n
k= j+1 F1(ε1, d1 + ε1 − d j , d1 + ε1 − dk, ε− j,−k = +∞)

+ · · · − (−1)n
∑

jn
· · · ∑ j1

F1
(
ε1, d1 + ε1 − d j1 , . . . , d1 + ε1 − d jn

)
 dε1,

(A2)

and hence

Pd
1 = 1 −

∫ ∞

−∞

n∑
j=2

F1(ε1, d1 + ε1 − d j , ε− j = +∞) dε1 + · · · +

−
∫ ∞

−∞
(−1)n F1(ε1, d1 + ε1 − d2, . . . , d1 + ε1 − dn) dε1. (A3)

Based on McFadden (1978) we can re-write this as (after replacing subscripts)

Pd
i = 1 −


∑

j �=i Pr(di + εi ≥ d j + ε j )
− ∑

j �=i

∑
k �={i, j} Pr(di + εi ≥ d j + ε j , di + εi ≥ dk + εk)

+ ∑
j �=i

∑
k �={i, j}

∑
l �={i, j,k} Pr(di + εi ≥ d j + ε j , di + εi ≥ dk

+ εk, di + εi ≥ dl + εl) · · · + (−1)nPr(di + εi ≥ d j + ε j : j ∈ J )


(A4)

and substituting in the definition of � obtains the expression in the theorem.

Proof of Lemma 2: Using Lemma 1, we have (for the multivariate GEV distribution)

�i (�m) = edi Gi (�e
m )

G(�e
m ) . The rest of the proof follows from Theorem 1 with approapriate

subsitutions of �i and simplification.

Proof of Theorem 2: If the random vector x is distributed as spherically symmetric (SSD)

then x
d= −x. To see this note that v d= −v since it is distributed on the unit sphere. And
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therefore

rv d= −rv d= −x d= x. (A5)

Now if ε
d= SSD, and {ui = −di : i ∈ J } we have

Pd
i ≡ Pr(di + εi ≤ d j + ε j : j ∈ J ) (A6)

≡ Pr(ui + εi ≥ u j + ε j : j ∈ J )

≡ Pu
i

for all i ∈ J .
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